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SUMMARY

The development of a two-dimensional viscous incompressible flow generated by a deformable circular
cylinder impulsively started into rectilinear motion is studied numerically for the Reynolds numbers equal
to 550 and 3000. The vorticity transport equation is solved by a second-order finite difference method in
both directions of the domains. The Poisson equation for the streamfunction is solved by a Fourier–
Galerkin method in the direction of the flow that is assumed to remain symmetrical and a second-order
finite difference for the radial direction. The advance in time is achieved by a second-order Adams–Bash-
forth scheme. The computed results are compared qualitatively with experimental and numerical results
done before in the particular non-deformable case. The comparison is found to be satisfactory. The
influence of the deformation of the cylinder on the flow structure and the drag coefficient is then
analyzed. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Despite the simplicity of the obstacle geometry, the flow structure around an impulsively
started circular cylinder (non-deformable) into rectilinear motion is complex, and all the
phenomena of fluid mechanics are present. That is why, for more than a century, numerous
theoretical, computational and experimental investigations of this problem have been reported
in the literature.

Theoretical investigations of an impulsively started flow were first undertaken by Blasius in
1908 [1], who obtained the first two terms of a time series solution of the boundary layer
equations. Subsequently, there have been many works attempting to obtain higher-order terms
and advance the solution beyond the separation stage. The authors [2–5] have all considered
this problem in the limiting case of infinite Reynolds number. Some authors [6–10] have
extended their works to finite and high Reynolds numbers. In [7,8], the problem is formulated
in boundary layer variables and an expansion in powers of time is obtained. These expansions
are corrected to take into account finite Reynolds number effects and are adjusted to match
the uniform flow far from the cylinder. In [9], the vorticity equation is solved by the method
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of matched asymptotic expansions. Inner (rotational flow) and outer (potential flow) solutions
are obtained to third-order in time and a composite solution is formed. The last two works
[8,9] provide extensive information for flow quantities of interest (such as vorticity field,
streamlines, body forces). In [10], the unsteady boundary layer equation of second-order is
solved by the parametric method of matched asymptotic expansions. All these works are valid
for relatively short times and the range of validity increases with increasing Reynolds number.

The second class is that of purely numerical solutions of the Navier–Stokes equations.
Chronologically, Thom [11] gave the first numerical solution of steady Navier–Stokes equa-
tions corresponding to viscous flow around a circular cylinder. Unsteady flow was first studied
for Reynolds numbers equal to 40 and 100 [12]. The works [7,8,13–19] investigated this
problem for different Reynolds numbers. The common points of interest of these papers are
the development of the primary unsteady wake length behind the cylinder and the evolution in
time of the drag coefficient and separation angle.

In all these references, the problem is formulated in vorticity–streamfunction variables, and
then Eulerian, Lagrangian and hybrid methods have been used for their discretization.
Numerous computations have been performed over the past 30 years on this flow, but there
are still open questions as to whether the numerics interfere with the physics of the problem,
especially for the high Reynolds number flows. Ta Phuoc [20] uses a fourth-order scheme to
resolve the Poisson equation for the streamfunction and a second-order finite difference
scheme for the vorticity transport equation. He presented computations for a range of Re
(550–1000) and detailed diagnostics and comparisons with experimental results. This work was
extended to higher Re (3000–9500) [21]. Lecointe and Piquet [22] tested several high-order
compact finite difference schemes as well, and they presented accurate computations for Re up
to 550 and tentative simulations for higher values of Re. A more recent work is that of Wang
and Dalton [23]. They used a predictor–corrector finite difference scheme for the vorticity
transport equation and a fast Poisson solver for the streamfunction. They presented results for
impulsively started and stopped flows for Re of 102 and 550.

More recently, some new numerical procedures, called vortex methods, are used to integrate
the vorticity–velocity formulation of the Navier–Stokes equations. In vortex methods, the
most notable studies are [24–26]. The first two investigations use the cloud-in cell method [27]
to convect the vortices but use different techniques to take account for viscous effects. Smith
and Standsby [24] used the method of random walks, whereas Chang and Chern [25] used a
finite difference scheme on the grid used by the cloud-in cell technique to resolve the diffusion
operator. Both works take advantage of the stability properties of vortex methods to extend
their computations to very high Reynolds numbers (up to 106 in [25]). However, it appears that
the increase in Re simulated is not followed by an adequate increase in the resolution.
Recently, some researchers [28,29] have conducted simulations of this flow using finite
difference schemes. Their simulations demonstrated the computational difficulties of the
problem, since very large numbers of grid points were necessary, in both works, to advance the
solution up to t=3 for Re=9500.

Koumoutsakos and Leonard [26] developed high-resolution direct numerical simulations
using a novel adaptive numerical scheme, based on vortex methods. They used up to a million
computational elements by efficiently implementing fast summation algorithms and by intro-
ducing a novel scheme for the enforcement of the no-slip condition for the vorticity–velocity
formation of the Navier–Stokes equations. Their results, compared with some representative
experimental, theoretical and computational works, provide benchmark quality simulations for
the early stages of the flow around an impulsively started cylinder. Moreover, they identify the
underlying mechanisms of unsteady separation and describe the effect of these phenomena on
the drag coefficient.
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Experimental investigations on unsteady flows resulting from an impulsive acceleration of a
non-deformable cylinder date back to time of Prandtl (1925) [30]. Some experimental visualiza-
tions were described in [31,32]. However, the most extensive experiments to date seem to be
those presented by Bouard and Coutanceau [33] for a translating cylinder. They analyzed in
detail the topological structure (formation and development of secondary vortices) of the flow
around a cylinder by using the instantaneous velocity field and streamlines.

The complex problem of unsteady viscous flow around a deformable body is of interest as
well in nature as in the technical practice (self-adaptable surfaces, for instance). The relevant
physical problem could be also a non-viscometric flow in contact with the wall. The present
work is concerned with the analysis of the flow structure at early times of the impulsively
started uniformly deforming circular cylinder. The Poisson equation for the streamfunction is
solved by a Fourier–Galerkin method coupled with a finite difference method of second-order.
The vorticity transport equation is solved by a second-order Adams–Bashforth procedure,
similar to Hakizumwami [34], which requires neither the preliminary calculation nor the
iterative process.

2. BASIC EQUATIONS

Consider the unsteady flow past a circular cylinder whose radius (of initial value a0) grows
uniformly with a constant factor of deformability A, started impulsively at the same time into
rectilinear motion, with a constant velocity U�, in a 2D viscous incompressible fluid initially
at rest. The unsteady Navier–Stokes equations in streamfunction and vorticity formulation for
the flow past a circular cylinder can be written in polar co-ordinates as
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where (r1, u) are polar co-ordinates (Figure 1), n is the kinematic viscosity and t1 is the time.
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Figure 1. System of co-ordinates.
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and the only non-zero component of the vorticity 6 is
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2.1. Initial conditions

The cylinder, being suddenly started from the rest, has the following initial conditions:

c0 =0 and v=0 at t=0. (8)

2.2. Boundary conditions

*For j�0

The cylinder, being deformable, has velocity components at the wall of
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It results from the previous equation that c0 is a non-uniform function on the surface of the
cylinder. Hence, a uniform function c is introduced as

c=c0 + u

a0

(a
(t

. (9)

*For j��

The streamfunction of the flow past a deformable circular cylinder is well-known
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By introducing the uniform streamfunction, the boundary condition is determined by
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2.3. The new system to resol6e
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and the initial symmetry of the flow, valid for all values of r, yields

c=0 and v=0 for u=0 and u=p. (14)

3. FORCES ON THE BODY

The drag force may be computed as the sum of the pressure drag Fp and the friction drag Ff.
The pressure drag can be determined from the vorticity flux on the cylinder surface as
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while the friction drag may be computed from the vorticity on the cylinder surface as
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and the drag coefficient of the body is given by
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4. NUMERICAL METHOD

The second-order Adams–Bashforth temporal scheme is used together with central differences
in space for Equation (11) on a grid defined by ji= (i−1)Dj, i=1, 2, . . . , M ; uj= ( j−1)Du,
j=1, 2, . . . , N ; Dj=j�/(M−1) and Du=p/(N−1). The domain is truncated in the j-direc-
tion at j�. As a result, the calculation of v i, j
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where the superscript ‘n ’ characterizes the time discretization.
By using the following expansions for c and v :
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which defines a system of equations in Fourier space, with the following boundary conditions,
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Equation (21) is discretized in the Fourier space using central differences so that
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Equation (22) defines a tridiagonal system of equations. An inverse Fourier transform on the
solution of (22) yields the corresponding solution in physical space (cij).

For the downstream boundary condition at infinity, an open boundary condition is
established by assuming that the viscous–diffusive effect is negligible; then the vorticity
equation will be
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This condition is similar to the so-called ‘radiant Sommerfeld condition’.
It remains only to determine the surface vorticity over the cylinder (equivalently, the

boundary condition for Equation (11)). Equation (12) at j=0 is

(2c
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A Taylor expansion yields a second-order equation for v(0, u, t),
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So, similar to Hakizumwami [34], the sequence of the numerical calculations is the following:

1. Initially, consider an irrotational flow, v(j, u, 0)=0.
2. Do a Fourier sine transform on v. Do a Fourier sine transform on the boundary condition

at infinity. Solve the Poisson equation for the streamfunction in the Fourier space. Take the
inverse Fourier sine transform of the solution.

3. The solution in the previous step is used to update the vorticity along of the cylinder
surface to satisfy the no-slip condition.

Figure 2. Drag coefficient of an impulsively started deformable cylinder at Re0=3000 for different grid sizes.
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4. Construct new values for the vorticity by solving the transport equation, with appropriate
time marching.

5. Repeat all steps from step 2.

5. RESULTS FOR Re0=550 AND Re0=3000

First of all, if a circular cylinder was deformed (with a radius growing or reducing in time) in
a fluid at rest, the flow streamlines would be rectilinear. To set impulsively either growing or

Figure 3. Evolution of instantaneous streamlines for Re0=550 and A=0.
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reducing circular cylinder in a rectilinear translation would cause some backward deviations of
the streamlines.

Now, the flow structure around an impulsively started and uniformly deforming circular
cylinder for Re0=550 and Re0=3000 will be looked at.

After using many grid sizes for the numerical calculations, due to accuracy reasons, only the
following ones will be used: 90×90 for Re0=550 and 120×120 for Re0=3000, with the time
step Dt=0.01 and j�=1.6094. Namely, for the relatively large value Re0=3000, for instance,
Figure 2 shows a good grouping together of all results beyond the grid size 120×120.

Figure 4. Evolution of equi-vorticity contour for Re0=550 and A=0.
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5.1. The flow structure

5.1.1. Non-deformable cylinder. The flow structure past an impulsively started non-deform-
ing circular cylinder is complex. The streamline history and equi-vorticity lines of the flow
fields are presented in Figures 3–6.

Beside the primary vortex, the appearance of a small secondary region can be observed. The
streamline patterns show the appearance of a secondary vortex at t=3 for Re0=550 (Figure
3) and for Re0=3000 (Figure 5). The secondary vorticity is also visible in the vorticity plots

Figure 5. Evolution of instantaneous streamlines for Re0=3000 and A=0.
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at t=2 for Re0=550 (Figure 4) and for Re0=3000 (Figure 6). It is the so-called a-phe-
nomenon [33]. The secondary vorticity remains confined after its initial appearance. Its
evolution is mainly affected by the dynamics of the primary vortex. As the secondary vortex
grows, it penetrates the primary vortex before cutting the link between the primary vortex and
the body surface (Figures 5 and 6).

The interplay of primary and secondary vorticities is manifested in the drag curve. After its
initial drop, the appearance and growth of the secondary vortex increases the drag coefficient

Figure 6. Evolution of equi-vorticity contour for Re0=3000 and A=0.
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as the primary vortex is pushed outwards. This increase reaches a maximum at t=3 for
Re0=550 (Figure 7) and at t=3.5 for Re0=3000 (Figure 8), beyond which the strength and
the size of the secondary vortex are reduced, whereas the primary vortex is further convected
by the free-stream velocity. The drag decays to its steady state value while symmetry persists.

Finally, the similarity of the present results concerning both evolution of time history of the
surface vorticity and the streamlines for Re0=3000 (Figures 5 and 14) with those previously
obtained numerically [21] may be observed. One can also observe the similarity of the present
results concerning the evolution of time history of the drag coefficient (B3%) for Re0=550
with those previously obtained in [26]. In contrast, comparison with the results of [26], for
Re0=3000, there are some differences at early times (the minimum of the drag coefficient is
equal to nearly 0.35 in [26] and 0.70 in the present work), probably because of the different
grid sizes and of the fact that in the present study, an irrotationnal flow was used as an initial
condition.

5.1.2. Deforming circular cylinder: a=a0(1+At). To set impulsively a growing circular
cylinder (A\0) in a rectilinear translation causes a backward deviation of streamlines issued
from the body surface. This deviation leads to some new phenomena beside those already
announced before in the non-deformable case. As a matter of fact, the growing radius pushes
the primary vortex away from the cylinder surface, renders the secondary vortex much
stronger and it will be able to push the primary vortex away from the cylinder. One can also
see that the so-called a-phenomenon is established before t=3 for Re0=550 (Figure 9) and
for Re0=3000 (Figure 10).

Figure 7. (a) Drag coefficient of an impulsively started reducing cylinder at Re0=550; (b) drag coefficient of an
impulsively started growing cylinder at Re0=550.
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Figure 8. (a) Drag coefficient of an impulsively started reducing cylinder at Re0=3000; (b) drag coefficient of an
impulsively started growing cylinder at Re0=3000.

In the case of a reducing radius (AB0), there is another new flow phenomenon behind the
cylinder. In Figures 11 and 12, the developments of the flow structure are given. The cylinder
with a reducing radius has a tendency to attract the fluid towards its surface. So, the primary
vortex is aspired by the cylinder and the formation of the secondary vortex is delayed.

5.2. Influence of body deformability on the drag coefficient

The following was discovered relative to the drag coefficient for a growing radius (A\0).
Before the primary vortex formation, the fluid pushed outwards by the cylinder creates a
reaction force opposite to the drag force, in addition to the effects due to sudden translation.
Therefore, the bigger the deformability factor A the stronger the reaction force, and the force
ratio becomes sufficient to overpower the drag force and propel the deforming cylinder down;
flow in the case of A=0.05 for Re0=3000 (Figure 8), for instance. However, the formation
of primary vortex reduces the precedent effect. The primary and secondary developments
increase both the wake behind the cylinder and the drag force as a consequence (Figure 7(b)
and Figure 8(b)). One may also observe (Figure 7(b) and Figure 8(b)), the bigger the
deformability factor A the stronger the secondary vortex, cutting more rapidly, the link

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 555–573 (1999)
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between the primary vortex and the cylinder, thus the drag coefficient decreases (Figure 7(b)
and Figure 8(b)).

For a reducing radius, it can be seen that initially the drag coefficient increases slightly for
Re0=550 independently of A, also for Re0=3000 if A is between 0 and −0.01 (Figure 7(a)
and Figure 8(a)). For Re0=550, this fact is due to the formation of the primary vortex that
is not so strong as to follow the surface cylinder. For Re0=3000, the effect of body
deformation is still insufficient to modify the dynamics of formation and development of
primary and secondary vortices when A\−0.01. On the contrary, for AB−0.01 and
Re0=3000 (Figure 8(a)), the fluid attracted by the cylinder turns around the primary vortex,
which is very strong, pushing the cylinder. The bigger the absolute value of the deformability

Figure 9. Evolution of the flow structure for Re0=550 and A=0.05.
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Figure 10. Evolution of the flow structure for Re0=3000 and A=0.05.

factor A, the more important the reduction of the drag coefficient. Then, for both Reynolds
numbers, the formation and development of primary vortex increases the drag coefficient but
less rapidly than in the case of non-deformable cylinder (Figures 7(a) and 8(a)).

5.3. Influence of body deformability on the boundary layer separation

The curves of vorticity on the surface of the cylinder show (Figures 13 and 14) the following:
the augmentation of the radius advances the boundary layer separation, similar to the
wall-injection effect, while the reduction of the radius delays the boundary layer separation as
in the case of the wall-suction control.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 555–573 (1999)
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6. CONCLUSIONS

The present numerical simulation is concerned with the analysis of unsteady separated flow at
early times around the impulsively started uniformly deforming circular cylinder for the
Reynolds numbers Re0=550 and Re0=3000. Firstly, all the results including the a-phe-
nomenon, previously detected either numerically or by experimental visualization, have been
reproduced in detail in the preliminary non-deformable case. Then, the interaction between
vortical structures and deformable walls, and their effect on the drag force experienced by the
body, have been studied. The interplay of these primary and secondary vorticities, on the one
hand, and the deforming surface of the cylinder, on the other hand, is the underlying

Figure 11. Evolution of the flow structure for Re0=550 and A= −0.05.
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Figure 12. Evolution of the flow structure for Re0=3000 and A= −0.05.

mechanism for drag reduction and increase. In fact, it has been shown here that, in both the
cases of the growing radius of the cylinder and the reducing radius of the cylinder, the body
deformability factor can have a favorable effect on the drag coefficient, but for different
physicals reasons. In fact, in the case of a growing radius, the favorable effect comes from the
force propulsion created by the body, and in the case of a reducing radius, the favorable effect
comes from the attraction of the flow backwards of the cylinder and then the attraction of the
primary vortex towards the cylinder. So, the body deformability may be used as a wake
control device that would favorably effect the interplay of primary and secondary vorticity,
thus reducing the drag coefficient.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 555–573 (1999)
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Figure 13. Vorticity on the surface of the body for Re0=550.

Figure 14. Vorticity on the surface of the body for Re0=3000.
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